def build_training_net(self, features, timestamps, mmsis):
self.build_model(tf.constant(True), features)
trainers = []
for obj in self.objectives:
trainers.append(obj.build_trainer(timestamps, mmsis))
example = slim.get_or_create_global_step() * self.batch_size
learning_rate = tf.train.exponential_decay(
self.initial_learning_rate, example, self.decay_examples,
self.learning_decay_rate)
optimizer = tf.train.MomentumOptimizer(learning_rate, self.momentum)
return TrainNetInfo(optimizer, trainers)
mixed_classification_multi_1.py 文件源码
python
阅读 25
收藏 0
点赞 0
评论 0
评论列表
文章目录