def __init__(self, lr, s_size, a_size):
self.state_in = tf.placeholder(shape=[1], dtype=tf.int32)
state_in_OH = slim.one_hot_encoding(self.state_in, s_size)
output = slim.fully_connected(state_in_OH,
a_size,
biases_initializer=None,
activation_fn=tf.nn.sigmoid,
weights_initializer=tf.ones_initializer())
self.output = tf.reshape(output, [-1])
self.chosen_action = tf.argmax(self.output, 0)
self.reward_holder = tf.placeholder(shape=[1], dtype=tf.float32)
self.action_holder = tf.placeholder(shape=[1], dtype=tf.int32)
self.responsible_weight = tf.slice(self.output, self.action_holder, [1])
self.loss = -(tf.log(self.responsible_weight) * self.reward_holder)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=lr)
self.update = optimizer.minimize(self.loss)
评论列表
文章目录