benchmark_tensorflow.py 文件源码

python
阅读 21 收藏 0 点赞 0 评论 0

项目:vgg-benchmarks 作者: aizvorski 项目源码 文件源码
def vgg16(inputs, num_classes, batch_size):
    with slim.arg_scope([slim.conv2d, slim.fully_connected],
                        activation_fn=tf.nn.relu,
                        weights_initializer=tf.truncated_normal_initializer(0.0, 0.01)):
        net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], padding="SAME", scope='conv1')
        net = slim.max_pool2d(net, [2, 2], scope='pool1')
        net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], padding="SAME", scope='conv2')
        net = slim.max_pool2d(net, [2, 2], scope='pool2')
        net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], padding="SAME", scope='conv3')
        net = slim.max_pool2d(net, [2, 2], scope='pool3')
        net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], padding="SAME", scope='conv4')
        net = slim.max_pool2d(net, [2, 2], scope='pool4')
        net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], padding="SAME", scope='conv5')
        net = slim.max_pool2d(net, [2, 2], scope='pool5')
        net = tf.reshape(net, (batch_size, 7 * 7 * 512))
        net = slim.fully_connected(net, 4096, scope='fc6')
        net = slim.dropout(net, 0.5, scope='dropout6')
        net = slim.fully_connected(net, 4096, scope='fc7')
        net = slim.dropout(net, 0.5, scope='dropout7')
        net = slim.fully_connected(net, 1000, activation_fn=None, scope='fc8')
    return net
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号