def train(self):
s = tf.Session()
init_fn = slim.assign_from_checkpoint_fn("./vgg_19.ckpt", slim.get_variables_to_restore(exclude = ['generate_image']))
#optimizer = tf.train.AdamOptimizer(learning_rate = 1e-1, beta1 = 0.5, beta2 = 0.5).minimize(self.loss, var_list = [self.target])
optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.loss, options={'maxiter': 1000}, var_list = [self.target])
s.run(tf.global_variables_initializer())
init_fn(s)
#for i in range(10000):
# _, loss_out = s.run([optimizer, self.loss])
# print("Current loss is: %.3f" %loss_out, end="\r")
#print("")
optimizer.minimize(s)
loss_out = s.run(self.loss)
print("Final loss: %.3f" %loss_out)
plt.imshow(np.clip(s.run(self.target), 0, 255).astype(np.uint8))
plt.show()
评论列表
文章目录