def generative_network(z, zdim):
"""Generative network to parameterize generative model. It takes
latent variables as input and outputs the likelihood parameters.
logits = neural_network(z)
Args:
z = tensor input
d = latent variable dimension
"""
with slim.arg_scope([slim.conv2d_transpose],
activation_fn=tf.nn.elu,
normalizer_fn=slim.batch_norm,
normalizer_params={'scale': True}):
net = tf.reshape(z, [N_MINIBATCH, 1, 1, zdim])
net = slim.conv2d_transpose(net, 128, 3, padding='VALID')
net = slim.conv2d_transpose(net, 64, 5, padding='VALID')
net = slim.conv2d_transpose(net, 32, 5, stride=2)
net = slim.conv2d_transpose(net, 1, 5, stride=2, activation_fn=None)
net = slim.flatten(net)
#net = slim.nn.sigmoid(net)
return net
评论列表
文章目录