def squeezenet_inference(inputs, is_training, keep_prob):
nets = slim.conv2d(inputs, 64,
[3, 3], scope='conv1')
nets = slim.max_pool2d(nets, [3, 3], padding='SAME', scope='pool1') # 56*48*64
nets = fire_module(nets, 16, 64, scope='fire2')
nets = fire_module(nets, 16, 64, scope='fire3')
nets = slim.max_pool2d(nets, [3, 3], padding='SAME', scope='pool1') # 28*24*128
nets = fire_module(nets, 32, 128, scope='fire4')
nets = fire_module(nets, 32, 128, scope='fire5')
nets = slim.max_pool2d(nets, [3, 3], padding='SAME', scope='pool5') # 14*12*256
nets = fire_module(nets, 48, 192, scope='fire6')
nets = fire_module(nets, 48, 192, scope='fire7')
nets = slim.max_pool2d(nets, [3, 3], padding='SAME', scope='pool6') # 7*6*384
nets = fire_module(nets, 64, 256, scope='fire8')
nets = fire_module(nets, 64, 256, scope='fire9') # 7*6*512
nets = slim.dropout(nets, keep_prob, is_training=is_training, scope='dropout9')
nets = slim.avg_pool2d(nets, [7, 6], scope='pool9') # 1*1*512
return nets
评论列表
文章目录