def create_model(self, model_input, vocab_size, l2_penalty=1e-4, **unused_params):
"""Creates a logistic model.
Args:
model_input: 'batch' x 'num_features' matrix of input features.
vocab_size: The number of classes in the dataset.
Returns:
A dictionary with a tensor containing the probability predictions of the
model in the 'predictions' key. The dimensions of the tensor are
batch_size x num_classes."""
with tf.name_scope('MyNNModel0'):
h1Units = 2400
a1 = slim.fully_connected(
model_input, h1Units, activation_fn=tf.nn.relu,
weights_regularizer=slim.l2_regularizer(l2_penalty),
scope='FC1')
output = slim.fully_connected(
a1, vocab_size, activation_fn=tf.nn.sigmoid,
weights_regularizer=slim.l2_regularizer(l2_penalty),
scope='FC2')
return {"predictions": output}
#%%
#%%
评论列表
文章目录