def _root_block(input,
initial_conv_filters,
weight_decay=5e-4,
ksize=(7,7),
is_pool=True):
''' Adds an initial conv block, with batch norm and relu for the DPN
Args:
input: input tensor
initial_conv_filters: number of filters for initial conv block
weight_decay: weight decay factor
Returns: a keras tensor
'''
x = slim.conv2d(input,
initial_conv_filters,
ksize,
padding='SAME',
stride=(1, 1),
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=tf.contrib.layers.xavier_initializer(),
biases_initializer=None)
x = slim.batch_norm(x)
x = tf.nn.relu(x)
if is_pool:
x = slim.max_pool2d(x, (3, 3), stride=(2, 2), padding='SAME')
return x
评论列表
文章目录