def create_model(self,
model_input,
vocab_size,
num_mixtures=None,
l2_penalty=1e-8,
sub_scope="",
original_input=None,
**unused_params):
num_methods = model_input.get_shape().as_list()[-1]
num_features = model_input.get_shape().as_list()[-2]
original_input = tf.nn.l2_normalize(original_input, dim=1)
gate_activations = slim.fully_connected(
original_input,
num_methods,
activation_fn=tf.nn.softmax,
weights_regularizer=slim.l2_regularizer(l2_penalty),
scope="gates"+sub_scope)
output = tf.einsum("ijk,ik->ij", model_input, gate_activations)
return {"predictions": output}
评论列表
文章目录