def cnn_layers(inputs, scope, end_points_collection, dropout_keep_prob=0.8, is_training=True):
with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d],
outputs_collections=[end_points_collection]):
net = slim.conv2d(inputs, 32, [5, 5], scope='conv1')
net = slim.max_pool2d(net, [2, 2], 2, scope='pool1')
net = slim.conv2d(net, 64, [5, 5], scope='conv2')
net = slim.max_pool2d(net, [2, 2], 2, scope='pool2')
net = slim.conv2d(net, 64, [5, 5], scope='conv3')
net = slim.max_pool2d(net, [2, 2], 2, scope='pool3')
net = slim.conv2d(net, 64, [5, 5], scope='conv4')
net = slim.conv2d(net, 64, [5, 5], scope='conv5')
net = slim.conv2d(net, 64, [5, 5], scope='conv6')
net = slim.conv2d(net, 64, [5, 5], scope='conv7')
net = slim.flatten(net)
net = slim.fully_connected(net, 128, scope='fc3')
return net, end_points_collection
评论列表
文章目录