def content_extractor(self, images, reuse=False):
# images: (batch, 32, 32, 3) or (batch, 32, 32, 1)
if images.get_shape()[3] == 1:
# For mnist dataset, replicate the gray scale image 3 times.
images = tf.image.grayscale_to_rgb(images)
with tf.variable_scope('content_extractor', reuse=reuse):
with slim.arg_scope([slim.conv2d], padding='SAME', activation_fn=None,
stride=2, weights_initializer=tf.contrib.layers.xavier_initializer()):
with slim.arg_scope([slim.batch_norm], decay=0.95, center=True, scale=True,
activation_fn=tf.nn.relu, is_training=(self.mode=='train' or self.mode=='pretrain')):
net = slim.conv2d(images, 64, [3, 3], scope='conv1') # (batch_size, 16, 16, 64)
net = slim.batch_norm(net, scope='bn1')
net = slim.conv2d(net, 128, [3, 3], scope='conv2') # (batch_size, 8, 8, 128)
net = slim.batch_norm(net, scope='bn2')
net = slim.conv2d(net, 256, [3, 3], scope='conv3') # (batch_size, 4, 4, 256)
net = slim.batch_norm(net, scope='bn3')
net = slim.conv2d(net, 128, [4, 4], padding='VALID', scope='conv4') # (batch_size, 1, 1, 128)
net = slim.batch_norm(net, activation_fn=tf.nn.tanh, scope='bn4')
if self.mode == 'pretrain':
net = slim.conv2d(net, 10, [1, 1], padding='VALID', scope='out')
net = slim.flatten(net)
return net
评论列表
文章目录