simple_yolo.py 文件源码

python
阅读 25 收藏 0 点赞 0 评论 0

项目:num-seq-recognizer 作者: gmlove 项目源码 文件源码
def cnn_layers(inputs, scope, end_points_collection, dropout_keep_prob=0.8, is_training=True):
  with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d],
                      outputs_collections=[end_points_collection]):
    with slim.arg_scope([slim.conv2d],
                        normalizer_fn=slim.batch_norm, normalizer_params={'is_training': is_training},
                        activation_fn=leaky_relu):
      net = slim.conv2d(inputs, 32, [3, 3], scope='conv1')
      net = slim.max_pool2d(net, [2, 2], 2, scope='pool1')
      net = slim.conv2d(net, 64, [3, 3], scope='conv2')
      net = slim.max_pool2d(net, [2, 2], 2, scope='pool2')
      net = slim.conv2d(net, 128, [3, 3], scope='conv3')
      net = slim.conv2d(net, 64, [1, 1], scope='conv4')
      box_net = net = slim.conv2d(net, 128, [3, 3], scope='conv5')

      net = slim.max_pool2d(net, [2, 2], 2, scope='pool5')
      net = slim.conv2d(net, 256, [3, 3], scope='conv6')
      net = slim.conv2d(net, 128, [1, 1], scope='conv7')
      net = slim.conv2d(net, 256, [3, 3], scope='conv8')

      box_net = _reorg(box_net, 2)
      net = tf.concat([box_net, net], 3)
      net = slim.conv2d(net, 256, [3, 3], scope='conv9')
      net = slim.conv2d(net, 75, [1, 1], activation_fn=None, scope='conv10')

  return net, end_points_collection
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号