def _bn_relu_conv_block(input,
filters,
kernel=(3, 3),
stride=(1, 1),
weight_decay=5e-4):
''' Adds a Batchnorm-Relu-Conv block for DPN
Args:
input: input tensor
filters: number of output filters
kernel: convolution kernel size
stride: stride of convolution
Returns: a keras tensor
'''
channel_axis = -1
x = slim.conv2d(input, filters, kernel, padding='SAME', stride=stride,
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=tf.contrib.layers.xavier_initializer(),
biases_initializer=None)
x = slim.batch_norm(x)
x = tf.nn.relu(x)
return x
评论列表
文章目录