def mlp_conv(self, x, kernel_size, stride, num_filters, micro_layer_size, name):
"""
multi layer perceptron convolution.
:param num_filters: number of micro_net filter
:param micro_layer_size: [hidden_layer]
:return:
"""
with tf.variable_scope(name, values=[x]):
# first convolution
net = slim.conv2d(inputs=x, num_outputs=num_filters, kernel_size=[kernel_size, kernel_size],
stride=stride, scope='first_conv', padding='SAME')
# cccp layer
with slim.arg_scope([slim.conv2d], kernel_size=[1, 1], stride=1,
padding='VALID', activation_fn=tf.nn.relu):
for hidden_i, hidden_size in enumerate(micro_layer_size):
net = slim.conv2d(net, hidden_size, scope='hidden_' + str(hidden_i))
return net
network_in_network.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录