def gcn_br(inputs, scope):
with tf.variable_scope(scope, 'gcn_br', [inputs]):
with slim.arg_scope([slim.conv2d],
padding='SAME',
activation_fn=tf.nn.relu,
normalizer_fn=None,
normalizer_params=None,
weights_initializer=tf.contrib.layers.xavier_initializer(),
weights_regularizer=tf.contrib.layers.l2_regularizer(0.0001),
biases_initializer=tf.zeros_initializer(),
biases_regularizer=tf.contrib.layers.l2_regularizer(0.0002)):
num_class = inputs.get_shape()[3]
conv = slim.conv2d(inputs, num_class, [3, 3])
conv = slim.conv2d(conv, num_class, [3, 3], activation_fn=None)
result_sum = tf.add(inputs, conv, name='fcn_br')
return result_sum
评论列表
文章目录