def _middle_conv(self, stage):
with tf.variable_scope('stage_' + str(stage)):
self.current_featuremap = tf.concat([self.stage_heatmap[stage-2],
self.sub_stage_img_feature,
self.center_map],
axis=3)
with slim.arg_scope([slim.conv2d],
padding='SAME',
activation_fn=tf.nn.relu,
weights_initializer=tf.contrib.layers.xavier_initializer()):
mid_net = slim.conv2d(self.current_featuremap, 128, [7, 7], scope='mid_conv1')
mid_net = slim.conv2d(mid_net, 128, [7, 7], scope='mid_conv2')
mid_net = slim.conv2d(mid_net, 128, [7, 7], scope='mid_conv3')
mid_net = slim.conv2d(mid_net, 128, [7, 7], scope='mid_conv4')
mid_net = slim.conv2d(mid_net, 128, [7, 7], scope='mid_conv5')
mid_net = slim.conv2d(mid_net, 128, [1, 1], scope='mid_conv6')
self.current_heatmap = slim.conv2d(mid_net, self.joints, [1, 1],
scope='mid_conv7')
self.stage_heatmap.append(self.current_heatmap)
cpm_body_slim.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录