def _createModel(self):
self.input = tf.placeholder('float', shape=[None,self.stateSize])
x1 = slim.fully_connected(self.input, 64, scope='fc/fc_1')
x1 = tf.nn.relu(x1)
self.Qout = slim.fully_connected(x1, self.actionSize)
self.tdTarget = tf.placeholder(shape=[None, self.actionSize],dtype=tf.float32)
self.loss = tf.reduce_mean(tf.square(self.tdTarget - self.Qout ) )
self.trainer = tf.train.RMSPropOptimizer(learning_rate=0.00025)
self.updateModel = self.trainer.minimize(self.loss)
tdTargetLogger= tf.summary.scalar('tdTarget', tf.reduce_mean(self.tdTarget))
lossLogger= tf.summary.scalar('loss', self.loss)
self.log = tf.summary.merge([tdTargetLogger, lossLogger])
评论列表
文章目录