def create_embedding_matrix(model):
# convert the wv word vectors into a numpy matrix that is suitable for insertion
# into our TensorFlow and Keras models
embedding_matrix = np.zeros((len(model.wv.vocab), vector_dim))
for i in range(len(model.wv.vocab)):
embedding_vector = model.wv[model.wv.index2word[i]]
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
return embedding_matrix
gensim_word2vec.py 文件源码
python
阅读 17
收藏 0
点赞 0
评论 0
评论列表
文章目录