def load_word2vec_matrix(vocab_size, embedding_size):
"""
Return the word2vec model matrix.
:param vocab_size: The vocab size of the word2vec model file
:param embedding_size: The embedding size
:return: The word2vec model matrix
"""
word2vec_file = 'word2vec_' + str(embedding_size) + '.model'
if os.path.isfile(word2vec_file):
model = gensim.models.Word2Vec.load(word2vec_file)
vocab = dict([(k, v.index) for k, v in model.wv.vocab.items()])
vector = np.zeros([vocab_size, embedding_size])
for key, value in vocab.items():
if len(key) > 0:
vector[value] = model[key]
return vector
else:
logging.info("? The word2vec file doesn't exist. "
"Please use function <create_vocab_size(embedding_size)> to create it!")
data_helpers.py 文件源码
python
阅读 30
收藏 0
点赞 0
评论 0
评论列表
文章目录