checkModel.py 文件源码

python
阅读 25 收藏 0 点赞 0 评论 0

项目:Question-Answering-NNs 作者: nbogdan 项目源码 文件源码
def loadTestData(folderName):
    data_train = pd.read_csv(folderName + 'data/test_datum.txt', sep='\t', error_bad_lines=False)
    labels = []
    for idx in range(data_train.question.shape[0]):
        labels.append(data_train.value[idx])
    texts_c3 = pickle.load(open(folderName + 'test_lemmas_c', 'rb'))
    texts_q3 = pickle.load(open(folderName + 'test_lemmas_q', 'rb'))
    texts_a3 = pickle.load(open(folderName + 'test_lemmas_a', 'rb'))
    tokenizer = pickle.load(open(folderName + 'structures/tokenizer', 'rb'))
    sequences_q = tokenizer.texts_to_sequences(texts_q3)
    sequences_a = tokenizer.texts_to_sequences(texts_a3)
    sequences_c = tokenizer.texts_to_sequences(texts_c3)

    word_index = tokenizer.word_index
    print('Found %s unique tokens.' % len(word_index))

    data_q = pad_sequences(sequences_q, maxlen=MAX_SEQUENCE_LENGTH_Q)
    data_a = pad_sequences(sequences_a, maxlen=MAX_SEQUENCE_LENGTH_A)
    data_c = pad_sequences(sequences_c, maxlen=MAX_SEQUENCE_LENGTH_C)

    labels = to_categorical(np.asarray(labels))
    print('Shape of label tensor:', labels.shape)

    return [data_c, data_q, data_a, labels, data_train]
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号