def label_test_file(self):
outfile = open("pred_vld.txt","w")
prep_alfa = lambda X: pad_sequences(sequences=self.indexer.texts_to_sequences(X),
maxlen=self.SentMaxLen)
vld = json.loads(open('validation.json', 'r').read())
for prem, hypo, label in zip(vld[0], vld[1], vld[2]):
prem_pad, hypo_pad = prep_alfa([prem]), prep_alfa([hypo])
ans = np.reshape(self.model.predict(x=[prem_pad, hypo_pad], batch_size = 1), -1) # PREDICTION
if np.argmax(ans) != label:
outfile.write(prem + "\n" + hypo + "\n")
outfile.write("Truth: " + self.rLabels[label] + "\n")
outfile.write('Contradiction \t{:.1f}%\n'.format(float(ans[0]) * 100) +
'Neutral \t\t{:.1f}%\n'.format(float(ans[1]) * 100) +
'Entailment \t{:.1f}%\n'.format(float(ans[2]) * 100))
outfile.write("-"*15 + "\n")
outfile.close()
评论列表
文章目录