def run_crawler(base_url, ua, start_date, end_date,
google_username, google_password):
temp_df = pd.DataFrame()
dates = date_range(start_date, end_date)
for d in dates:
url = '{0}//transfers/transfertagedetail/statistik/top/land_id_zu/0/land_id_ab/0/leihe//datum/{1}/plus/1'.format(
base_url, d)
rqst = requests.get(url, headers={"User-Agent": ua})
resp = TextResponse(url, body=rqst.content)
players, nat, ages, positions, prev_clubs, next_clubs, mkt_values, trans_prices = get_data_lists(
resp)
df = get_df(players,
nat,
ages,
positions,
prev_clubs,
next_clubs,
mkt_values,
trans_prices,
d)
trends_df = get_trends_data(google_username, google_password,
players, d)
df = pd.merge(df, trends_df, how='left', on='player')
temp_df = pd.concat([temp_df, df])
return temp_df
transfermarkt_crawler.py 文件源码
python
阅读 25
收藏 0
点赞 0
评论 0
评论列表
文章目录