def main(ds):
"""
Creates an overview plot for the Rosemount temperature sensors; deiced and non-deiced sensors.
It calls all plotting functions and sets up axes layout.
"""
#Setup up axes layout: 3 axes in one column
gs=gridspec.GridSpec(2, 1, height_ratios=[1,4])
top_cell=gs[0,0]
bottom_cell=gs[1,0]
gs1=gridspec.GridSpecFromSubplotSpec(4,1, bottom_cell, height_ratios=[1,1,10,10], hspace=0.05)
fig=QaQc_Figure().setup()
ax_tat_ts=fig.add_subplot(gs1[3]) # axes for true air temperature time series
ax_iat_ts=fig.add_subplot(gs1[2], sharex=fig.get_axes()[0]) # axes for indicated air temperature time series
ax_lwc_ts=fig.add_subplot(gs1[1], sharex=fig.get_axes()[0]) # axes for cloud indicator
ax_heater_ts=fig.add_subplot(gs1[0], sharex=fig.get_axes()[0]) # axes for heater indicator
gs2=gridspec.GridSpecFromSubplotSpec(1,3, top_cell, hspace=0.15)
ax_scatter=fig.add_subplot(gs2[0], aspect='equal') # axes for scatter plot
ax_hist=fig.add_subplot(gs2[1]) # axes for histogram
ax_ps=fig.add_subplot(gs2[2]) # axes for power spectrum
set_suptitle(fig, ds, 'QA-Temperature')
data =get_data(ds, VARIABLE_NAMES)
for var in ['ITDI', 'NDTI', 'TAT_DI_R', 'TAT_ND_R']:
data[var][data[var] <= 0] = np.nan
# call all plotting methods
plot_tat(ax_tat_ts, data)
plot_iat(ax_iat_ts, data)
plot_lwc(ax_lwc_ts, data)
plot_heater(ax_heater_ts, data)
plot_iat_scatter(ax_scatter, data)
plot_iat_histogram(ax_hist, data)
plot_power_spectrum(ax_ps, data)
for ax in fig.get_axes()[0:4]:
add_takeoff(ax, data)
add_landing(ax, data)
ax=fig.get_axes()[0]
zoom_to_flight_duration(ax, data)
add_time_buffer(ax)
return fig
#ds = netCDF4.Dataset('D:\\netcdf-test-files\\temperature_qa_extract_20160215_b943.nc', 'r')
#plt.close('all')
#ds = netCDF4.Dataset('./data/temperature_qa_extract_20160215_b943.nc', 'r')
#ds=d
#fig = main(ds)
#data=get_data(ds, VARIABLE_NAMES)
#close('all')
#fig=figure()
#ax=gca()
#plot_power_spectrum(ax, data)
#fig.savefig('/home/axel/test.png')
评论列表
文章目录