def choose_classifier(classifier, # which classifier to use
# parameters for the tree based classifiers
trees_n_estimators=None, trees_criterion=None,
trees_max_features=None, trees_max_depth=None,
# the ones for k-nearest-neighbors
knn_n_neighbors=None, knn_weights=None):
# note that possibly inactive variables have to be optional
# as ac_pysmac does not assign a value for inactive variables
# during the minimization phase
if classifier == 'random_forest':
predictor = sklearn.ensemble.RandomForestClassifier(
trees_n_estimators, trees_criterion,
trees_max_features, trees_max_depth)
elif classifier == 'extra_trees':
predictor = sklearn.ensemble.ExtraTreesClassifier(
trees_n_estimators, trees_criterion,
trees_max_features, trees_max_depth)
elif classifier == 'k_nearest_neighbors':
predictor = sklearn.neighbors.KNeighborsClassifier(
knn_n_neighbors, knn_weights)
predictor.fit(X_train, Y_train)
return -predictor.score(X_test, Y_test)
# defining all the parameters with respective defaults.
sklearn_model_selection.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录