def feature_importances(self):
'''
Return the feature importances.
'''
if len(self.estimators) == 0:
raise ValueError('the model has not been trained yet')
importances = Parallel(n_jobs=self.n_jobs, backend="threading")(
delayed(getattr, check_pickle=False)(
tree, 'feature_importances_'
)
for tree in self.estimators
)
return sum(importances) / self.n_estimators
评论列表
文章目录