test_models.py 文件源码

python
阅读 29 收藏 0 点赞 0 评论 0

项目:pines 作者: dmitru 项目源码 文件源码
def test_boston(self):
        from sklearn.tree import DecisionTreeRegressor as DecisionTreeRegressorSklearn
        model = DecisionTreeRegressor(max_n_splits=3)
        model_sklearn = DecisionTreeRegressorSklearn()

        dataset = load_boston()
        mse = []
        mse_sklearn = []

        for fold in range(5):
            X_train, X_test, y_train, y_test = train_test_split(
                dataset.data, dataset.target, test_size=0.33)

            model.fit(X_train, y_train)
            y = model.predict(X_test)
            mse.append(mean_squared_error(y, y_test))

            model_sklearn.fit(X_train, y_train)
            y = model_sklearn.predict(X_test)
            mse_sklearn.append(mean_squared_error(y, y_test))

        mean_mse = np.mean(mse)
        mean_mse_sklearn = np.mean(mse_sklearn)
        print(mean_mse, mean_mse_sklearn)
        # Check that our model differs in MSE no worse than 20%
        self.assertTrue(np.abs(mean_mse - mean_mse_sklearn) / mean_mse_sklearn < 0.2)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号