def test_asarray():
X, Y = _get_small_datasets(padded=False, duration=True)
lengths = [len(x) for x in X]
X, Y = _get_small_datasets(
padded=True, duration=True, padded_length=np.max(lengths))
X_array = np.asarray(X)
assert X_array.ndim == 3
assert np.allclose(X_array, X.asarray())
# Explicitly give padded length to actual max time length
X, Y = _get_small_datasets(padded=False, duration=True)
assert np.allclose(X_array, X.asarray(padded_length=np.max(lengths)))
# Make sure that auto-guessing padded_length should get same result as
# explicitly given max time length
assert np.allclose(X_array, X.asarray(padded_length=None))
# Force triggering re-allocations
assert np.allclose(X_array, X.asarray(
padded_length=None, padded_length_guess=1))
def __test_very_small_padded_length():
X, Y = _get_small_datasets(padded=False, duration=True)
X.asarray(padded_length=1)
# Should raise `num frames exceeded`
yield raises(RuntimeError)(__test_very_small_padded_length)
评论列表
文章目录