def run_test_with_model(train, test, features, model_path):
start_time = time.time()
gbm = xgb.Booster()
gbm.load_model(model_path)
print("Validating...")
check = gbm.predict(xgb.DMatrix(train[features]))
score = roc_auc_score(train['isDuplicate'].values, check)
validation_df = pd.DataFrame({'isDuplicate': train['isDuplicate'].values, 'probability': check})
# print(validation_df)
print('AUC score value: {:.6f}'.format(score))
# score1 = roc_auc_score(validation_df['isDuplicate'].values, validation_df['probability'])
# print('AUC score check value: {:.6f}'.format(score1))
imp = get_importance(gbm, features)
print('Importance array: ', imp)
print("Predict test set...")
test_prediction = gbm.predict(xgb.DMatrix(test[features]))
print('Training time: {} minutes'.format(round((time.time() - start_time)/60, 2)))
return test_prediction.tolist(), validation_df, score
s11_run_xgboost_only_test.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录