tuner.py 文件源码

python
阅读 29 收藏 0 点赞 0 评论 0

项目:xgboost-tuner 作者: cwerner87 项目源码 文件源码
def tune_num_estimators(metric: str,
                        label: np.ndarray,
                        params: dict,
                        strat_folds: StratifiedKFold,
                        train) -> Tuple[int, float]:
    """
    Uses xgboost's cross-validation method to tune the number of estimators and returns that along with the best CV score
    achieved.

    :param metric:
        Evaluation metric that is monitored during cross-validation - e.g. 'logloss' or 'rmse'.
    :param label:
        An array-like containing the labels of the classification or regression problem.
    :param params:
        A dictionary of XGB parameters.
    :param strat_folds:
        A StratifiedKFold object to cross validate the parameters.
    :param train:
        An array-like containing the training input samples.
    :return:
        A tuple containing the tuned number of estimators along with the best CV score achieved.
    """
    eval_hist = xgb.cv(
        dtrain=xgb.DMatrix(train, label=label),
        early_stopping_rounds=50,
        folds=strat_folds,
        metrics=metric,
        num_boost_round=10000,
        params=params,
        verbose_eval=True
    )
    num_trees = eval_hist.shape[0]
    best_score = eval_hist.values[num_trees - 1, 0]
    return num_trees, best_score
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号