XGB_solver.py 文件源码

python
阅读 24 收藏 0 点赞 0 评论 0

项目:tpai_comp 作者: luuuyi 项目源码 文件源码
def train_model_for_appcounts(df):
    app_df = df[['appCount','age','gender','education','marriageStatus','haveBaby']]
    known_app = app_df[app_df.appCount.notnull()].as_matrix()
    unknown_app = app_df[app_df.appCount.isnull()].as_matrix()
    y = known_app[:, 0]
    X = known_app[:, 1:]

    print 'Train Xgboost Model(For Missing AppCount)...'
    start_time  = datetime.datetime.now()
    xgb_reg = XGBRegressor(n_estimators=100, max_depth=3)
    xgb_reg.fit(X, y)
    end_time = datetime.datetime.now()
    print 'Training Done..., Time Cost: %d' % ((end_time - start_time).seconds)

    predicted_app = xgb_reg.predict(unknown_app[:, 1:])
    df.loc[ (df.appCount.isnull()), 'appCount' ] = predicted_app 

    return df, xgb_reg
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号