def __init__(self, trainX, trainY):
self.trainX = trainX
self.trainY = trainY
self.level0 = xgb.XGBClassifier(learning_rate=0.325,
silent=True,
objective="binary:logistic",
nthread=-1,
gamma=0.85,
min_child_weight=5,
max_delta_step=1,
subsample=0.85,
colsample_bytree=0.55,
colsample_bylevel=1,
reg_alpha=0.5,
reg_lambda=1,
scale_pos_weight=1,
base_score=0.5,
seed=0,
missing=None,
n_estimators=1920, max_depth=6)
self.h_param_grid = {'max_depth': hp.quniform('max_depth', 1, 13, 1),
'subsample': hp.quniform('subsample', 0.5, 1, 0.05),
'learning_rate': hp.quniform('learning_rate', 0.025, 0.5, 0.025),
'gamma': hp.quniform('gamma', 0.5, 1, 0.05),
'colsample_bytree': hp.quniform('colsample_bytree', 0.5, 1, 0.05),
'n_estimators': hp.quniform('n_estimators', 10, 200, 5),
}
self.to_int_params = ['n_estimators', 'max_depth']
dsb_create_voxel_model_predictions.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录