def xgb150opt(df_cell_train_feats, y_train, df_cell_test_feats):
def prepare_feats(df):
return df.drop(['time'], axis=1)
logging.info("train xgb150opt model")
clf = xgb.XGBClassifier(n_estimators=150, learning_rate=0.1, max_depth=3, min_child_weight=3, subsample=0.667, colsample_bytree=1)
clf.fit(prepare_feats(df_cell_train_feats), y_train)
y_test_pred = clf.predict_proba(prepare_feats(df_cell_test_feats))
return y_test_pred
model.py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录