def split_build_valid():
train_user['is_valid'] = np.random.choice([0,1], size=len(train_user),
p=[1-valid_size, valid_size])
valid_n = train_user['is_valid'].sum()
build_n = (train_user.shape[0] - valid_n)
print('build user:{}, valid user:{}'.format(build_n, valid_n))
valid_user = train_user[train_user['is_valid']==1].user_id
is_valid = X_train.user_id.isin(valid_user)
dbuild = xgb.DMatrix(X_train[~is_valid].drop('user_id', axis=1), y_train[~is_valid])
dvalid = xgb.DMatrix(X_train[is_valid].drop('user_id', axis=1), label=y_train[is_valid])
watchlist = [(dbuild, 'build'),(dvalid, 'valid')]
print('FINAL SHAPE')
print('dbuild.shape:{} dvalid.shape:{}\n'.format((dbuild.num_row(), dbuild.num_col()),
(dvalid.num_row(), dvalid.num_col())))
return dbuild, dvalid, watchlist
#==============================================================================
002_xgb_holdout_item_812_1.py 文件源码
python
阅读 16
收藏 0
点赞 0
评论 0
评论列表
文章目录