def runXGB(train_X, train_y, seed_val=123):
param = {}
param['objective'] = 'multi:softprob'
param['eta'] = 0.05
param['max_depth'] = 6
param['silent'] = 1
param['num_class'] = 22
param['eval_metric'] = "mlogloss"
param['min_child_weight'] = 2
param['subsample'] = 0.9
param['colsample_bytree'] = 0.9
param['seed'] = seed_val
num_rounds = 115
plst = list(param.items())
xgtrain = xgb.DMatrix(train_X, label=train_y)
model = xgb.train(plst, xgtrain, num_rounds)
return model
评论列表
文章目录