def train_relatedness_classifier(trainX, trainY):
xg_train = xgb.DMatrix(trainX, label=trainY)
# setup parameters for xgboost
param = {}
# use softmax multi-class classification
param['objective'] = 'binary:logistic'
# scale weight of positive examples
param['eta'] = 0.1
param['max_depth'] = 6
param['silent'] = 1
param['nthread'] = 20
num_round = 1000
relatedness_classifier = xgb.train(param, xg_train, num_round);
return relatedness_classifier
评论列表
文章目录