def create_ns (tmp_imgpath, cnt_ns ) :
global pyramids
tmp_img = Image.open("%s/%s" %(coco_path, tmp_imgpath), 'r' )
pyramids = list( pyramid_gaussian( tmp_img, downscale=math.sqrt(2) ) )
for i in range ( len(pyramids) ):
if min( pyramids[i].shape[0], pyramids[i].shape[1] ) < MinFace :
del pyramids[i:]
break
# for j in range(4) :
for j in range(36) :
# creating random index
img_index = random.randint(0, len(pyramids)-1 )
tmp_patch_num = ( pyramids[img_index].shape[0] - 12 + 1) * ( pyramids[img_index].shape[1] - 12 + 1)
rand_index = random.randint(0, tmp_patch_num)
# x, y position decoding
row_max = pyramids[img_index].shape[0]
col_max = pyramids[img_index].shape[1]
row = 0
col = rand_index
while ( col >= col_max - 12 +1 ) :
row = row + 1
col = col - (col_max-12+1)
flag = 0
# Rejecting Black and White image
tmp_ns = pyramids[img_index][row:row+12, col:col+12]
if not len(tmp_ns.shape)==3 :
print " Gray Image. Skip "
return 0
# Rejecting Positive Samples
scale_factor = math.sqrt(2)**img_index
tmp_ns = pyramids[img_index][row:row+12, col:col+12]
tmp_ns = Image.fromarray((tmp_ns*255.0).astype(np.uint8) )
# tmp_ns = tmp_ns.resize( (12,12), Image.BICUBIC )
tmp_ns = tmp_ns.resize( (12,12), Image.BILINEAR )
tmp_ns.save("%s/ns-%s.jpg" %(ns_path, cnt_ns+j) )
return 1
# -----------------------------------------
评论列表
文章目录