def randomrotate(angle=90, randomstate=None, invert=False, padding=0, extrapadding=0):
ignorechannels=True
if isinstance(randomstate, int):
rng = np.random.RandomState(randomstate)
elif isinstance(randomstate, np.random.RandomState):
rng = randomstate
else:
rng = np.random.RandomState(None)
def _randomrot90(im):
k = rng.randint(0, 4)
if not invert:
return np.rot90(im, k=k)
else:
return np.rot90(im, k=(4-k))
def _randomrot45(im):
assert im.shape[0] == im.shape[1], "45 degree rotations are tested only for square images."
k = int(rng.choice(a=[0, 1, 3, 5, 7, 8], size=1))
# Rotation angle (in degrees)
rotangle = 45 * k
if not invert:
if k == 0 or k == 8:
im = np.pad(im, (padding + extrapadding), mode='reflect') if padding > 0 else im
return im
else:
im = _rotate(im, angle=rotangle, resize=True, mode='reflect')
im = np.pad(im, padding, mode='reflect') if padding > 0 else im
return im
else:
if k == 0 or k == 8:
im = im[(padding + extrapadding):-(padding + extrapadding),
(padding + extrapadding):-(padding + extrapadding)] if padding > 0 else im
return im
else:
im = im[padding:-padding, padding:-padding] if padding > 0 else im
# For some reason, _rotate doesn't like if it's values are larger than +1 or smaller than -1.
# Scale
scale = np.max(np.abs(im))
im *= (1./scale)
# Process
im = _rotate(im, angle=(360 - rotangle), resize=True, mode='reflect')
# Rescale
im *= scale
# Edges of im are now twice as large as they were in the original image. Crop.
cropstart = im.shape[0]/4
cropstop = cropstart * 3
im = im[cropstart:cropstop, cropstart:cropstop]
return im
if angle == 45:
return image2batchfunc(_randomrot45, ignorechannels=ignorechannels)
elif angle == 90:
return image2batchfunc(_randomrot90, ignorechannels=ignorechannels)
else:
raise NotImplementedError("Curently implemented rotation angles are 45 and 90 degrees.")
# Function for random flips of the image
prepkit.py 文件源码
python
阅读 19
收藏 0
点赞 0
评论 0
评论列表
文章目录