def update(self, obs):
obs = resize(obs, self.factors.shape, preserve_range=True)
obs = np.floor((obs*self.num_bins)).astype(np.int32)
context = [0, 0, 0, 0]
log_prob = 0.0
log_recoding_prob = 0.0
for i in range(self.factors.shape[0]):
for j in range(self.factors.shape[1]):
context[3] = obs[i, j-1] if j > 0 else 0
context[2] = obs[i-1, j] if i > 0 else 0
context[1] = obs[i-1, j-1] if i > 0 and j > 0 else 0
context[0] = obs[i-1, j+1] if i > 0 and j < self.factors.shape[1]-1 else 0
log_prob += self.factors[i, j].update(context, obs[i, j])
log_recoding_prob += self.factors[i, j].log_prob(context, obs[i, j])
return self.exploration_bonus(log_prob, log_recoding_prob)
cts_density_model.py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录