def test_frame_wise_torch_data_loader():
import torch
from torch.utils import data as data_utils
X, Y = _get_small_datasets(padded=False)
# Since torch's Dataset (and Chainer, and maybe others) assumes dataset has
# fixed size length, i.e., implements `__len__` method, we need to know
# number of frames for each utterance.
# Sum of the number of frames is the dataset size for frame-wise iteration.
lengths = np.array([len(x) for x in X], dtype=np.int)
# For the above reason, we need to explicitly give the number of frames.
X = MemoryCacheFramewiseDataset(X, lengths, cache_size=len(X))
Y = MemoryCacheFramewiseDataset(Y, lengths, cache_size=len(Y))
class TorchDataset(data_utils.Dataset):
def __init__(self, X, Y):
self.X = X
self.Y = Y
def __getitem__(self, idx):
return torch.from_numpy(self.X[idx]), torch.from_numpy(self.Y[idx])
def __len__(self):
return len(self.X)
def __test(X, Y, batch_size):
dataset = TorchDataset(X, Y)
loader = data_utils.DataLoader(
dataset, batch_size=batch_size, num_workers=1, shuffle=True)
for idx, (x, y) in enumerate(loader):
assert len(x.shape) == 2
assert len(y.shape) == 2
yield __test, X, Y, 128
yield __test, X, Y, 256
评论列表
文章目录