train.py 文件源码

python
阅读 19 收藏 0 点赞 0 评论 0

项目:pytorch-semseg 作者: meetshah1995 项目源码 文件源码
def train(args):

    # Setup Dataloader
    data_loader = get_loader(args.dataset)
    data_path = get_data_path(args.dataset)
    loader = data_loader(data_path, is_transform=True, img_size=(args.img_rows, args.img_cols))
    n_classes = loader.n_classes
    trainloader = data.DataLoader(loader, batch_size=args.batch_size, num_workers=4, shuffle=True)

    # Setup visdom for visualization
    if args.visdom:
        vis = visdom.Visdom()

        loss_window = vis.line(X=torch.zeros((1,)).cpu(),
                           Y=torch.zeros((1)).cpu(),
                           opts=dict(xlabel='minibatches',
                                     ylabel='Loss',
                                     title='Training Loss',
                                     legend=['Loss']))

    # Setup Model
    model = get_model(args.arch, n_classes)

    model = torch.nn.DataParallel(model, device_ids=range(torch.cuda.device_count()))
    model.cuda()
    optimizer = torch.optim.SGD(model.parameters(), lr=args.l_rate, momentum=0.99, weight_decay=5e-4)

    for epoch in range(args.n_epoch):
        for i, (images, labels) in enumerate(trainloader):
            images = Variable(images.cuda())
            labels = Variable(labels.cuda())

            optimizer.zero_grad()
            outputs = model(images)

            loss = cross_entropy2d(outputs, labels)

            loss.backward()
            optimizer.step()

            if args.visdom:
                vis.line(
                    X=torch.ones((1, 1)).cpu() * i,
                    Y=torch.Tensor([loss.data[0]]).unsqueeze(0).cpu(),
                    win=loss_window,
                    update='append')

            if (i+1) % 20 == 0:
                print("Epoch [%d/%d] Loss: %.4f" % (epoch+1, args.n_epoch, loss.data[0]))

        torch.save(model, "{}_{}_{}_{}.pkl".format(args.arch, args.dataset, args.feature_scale, epoch))
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号