def convert2tensor(self, dataset, batch_size, limit):
data = dataset['data']
data = data[:limit]
print("normalizing images...")
data = common.normalize(data)
print("done")
target = dataset['labels']
target = target[:limit]
target = np.asarray(target)
tensor_data = torch.from_numpy(data)
tensor_data = tensor_data.float()
tensor_target = torch.from_numpy(target)
loader = data_utils.TensorDataset(tensor_data, tensor_target)
loader_dataset = data_utils.DataLoader(loader, batch_size=batch_size, shuffle = True)
return loader_dataset
评论列表
文章目录