def __init__(self, host, port):
serv_host = FLAGS.host
serv_port = FLAGS.port
model_name = FLAGS.model_name
model_version = FLAGS.model_version
self.request_timeout = FLAGS.request_timeout
config = tf.ConfigProto(log_device_placement=False)
config.gpu_options.allow_growth = True
self.sess = tf.Session(config=config)
init = tf.global_variables_initializer()
config = Config()
self.woipv = WoipvPspNetModel(config)
self.input_tensor = tf.placeholder(tf.string, name="input_tensor")
processed = tf.cast(tf.decode_raw(self.input_tensor, tf.uint8), tf.float32)
processed = tf.reshape(processed, [288, 288, 3])
self.image_op = processed
processed = tf.image.per_image_standardization(processed)
processed = tf.expand_dims(processed, axis=0)
self.result_op = tf.nn.sigmoid(self.woipv.inference(processed))
self.sess.run(init)
ckpt = tf.train.get_checkpoint_state("/training/woipv_train")
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
variables_to_restore = tf.global_variables()
chkpt_saver = tf.train.Saver(variables_to_restore,
write_version=tf.train.SaverDef.V2)
chkpt_saver.restore(self.sess, ckpt.model_checkpoint_path)
self._host = host
self._port = port
self._app = bottle.Bottle()
self._route()
评论列表
文章目录