utils.py 文件源码

python
阅读 21 收藏 0 点赞 0 评论 0

项目:intel-cervical-cancer 作者: wangg12 项目源码 文件源码
def get_augmented_test_set(data_root, idx_file,
              scale_size, crop_size, aug_type='ten_crop',
              seg_root=None, mixture=False):
  dsets = []
  if aug_type == 'ten_crop':
    crop_types = [0, 1, 2, 3, 4]
    # 0: center crop,
    # 1: top left crop, 2: top right crop
    # 3: bottom right crop, 4: bottom left crop
    flips = [0, 1] # 0: no flip, 1: horizontal flip
    for i in crop_types:
      for j in flips:
        data_transform = transforms.Compose([
          transforms.Scale(scale_size),
          # transforms.CenterCrop(crop_size),
          transforms.ToTensor(),
          RandomFlip(flips[j]),
          SpecialCrop((crop_size, crop_size), crop_type=crop_types[i]),
          transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ])
        if mixture:
          seg_transform = transforms.Compose([
              transforms.Scale(crop_size),
              # transforms.CenterCrop(crop_size),
              transforms.ToTensor(),
              RandomFlip(flips[j]),
              # SpecialCrop(crop_size=(crop_size, crop_size), crop_type=crop_types[i]),
              transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
          ])

          dsets.append(MyImageFolder(root = data_root,
                      idx_file = idx_file,
                      transform = data_transform,
                      seg_transform = seg_transform,
                      seg_root = seg_root))
        else:
          dsets.append(MyImageFolder(root = data_root,
                      idx_file = idx_file,
                      transform = data_transform))

  return dsets
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号