def __call__(self, img):
img_flip = img.transpose(Image.FLIP_LEFT_RIGHT)
center_crop = transforms.CenterCrop(self.size)
img_list = []
w, h = img.size
for image in [img, img_flip]:
img_list.append(center_crop(image))
img_list.append(image.crop((0, 0, self.size, self.size)))
img_list.append(image.crop((w-self.size, 0, w, self.size)))
img_list.append(image.crop((0, h - self.size, self.size, h)))
img_list.append(image.crop((w-self.size, h-self.size, w, h)))
imgs = None
to_tensor = transforms.ToTensor()
for image in img_list:
if imgs is None:
temp_img = to_tensor(image)
imgs = self.normalize(temp_img)
else:
temp_img = to_tensor(image)
temp_img = self.normalize(temp_img)
imgs = torch.cat((imgs, temp_img))
return imgs
# ---------------------------------------------------------------------------------------------
# from: https://github.com/eladhoffer/convNet.pytorch/blob/master/preprocess.py
评论列表
文章目录