def initialize(self, opt):
BaseDataLoader.initialize(self, opt)
transformations = [transforms.Scale(opt.loadSize),
transforms.RandomCrop(opt.fineSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))]
transform = transforms.Compose(transformations)
# Dataset A
dataset_A = ImageFolder(root=opt.dataroot + '/' + opt.phase + 'A',
transform=transform, return_paths=True)
data_loader_A = torch.utils.data.DataLoader(
dataset_A,
batch_size=self.opt.batchSize,
shuffle=not self.opt.serial_batches,
num_workers=int(self.opt.nThreads))
# Dataset B
dataset_B = ImageFolder(root=opt.dataroot + '/' + opt.phase + 'B',
transform=transform, return_paths=True)
data_loader_B = torch.utils.data.DataLoader(
dataset_B,
batch_size=self.opt.batchSize,
shuffle=not self.opt.serial_batches,
num_workers=int(self.opt.nThreads))
self.dataset_A = dataset_A
self.dataset_B = dataset_B
flip = opt.isTrain and not opt.no_flip
self.paired_data = PairedData(data_loader_A, data_loader_B,
self.opt.max_dataset_size, flip)
评论列表
文章目录