def __init__(self, isTrain, isNN):
super(RegressionNN, self).__init__(isTrain, isNN)
# data preprocessing
#self.dataPreprocessing()
self.net1 = NeuralNet(
layers=[ # three layers: one hidden layer
('input', layers.InputLayer),
('hidden', layers.DenseLayer),
#('hidden2', layers.DenseLayer),
#('hidden3', layers.DenseLayer),
('output', layers.DenseLayer),
],
# layer parameters:
input_shape=(None, 13), # input dimension is 13
hidden_num_units=6, # number of units in hidden layer
#hidden2_num_units=8, # number of units in hidden layer
#hidden3_num_units=4, # number of units in hidden layer
output_nonlinearity=None, # output layer uses sigmoid function
output_num_units=1, # output dimension is 1
# obejctive function
objective_loss_function = lasagne.objectives.squared_error,
# optimization method:
update=lasagne.updates.nesterov_momentum,
update_learning_rate=0.002,
update_momentum=0.4,
# use 25% as validation
train_split=TrainSplit(eval_size=0.2),
regression=True, # flag to indicate we're dealing with regression problem
max_epochs=100, # we want to train this many epochs
verbose=0,
)
评论列表
文章目录