def gap(network, out_size, batch_norm,
gap_nonlinearity, out_nonlinearity):
gap_nonlinearity = getattr(lnn.nonlinearities, gap_nonlinearity)
out_nonlinearity = getattr(lnn.nonlinearities, out_nonlinearity)
# output classification layer
network = lnn.layers.Conv2DLayer(
network, num_filters=out_size, filter_size=1,
nonlinearity=gap_nonlinearity, name='Output_Conv')
if batch_norm:
network = lnn.layers.batch_norm(network)
network = lnn.layers.Pool2DLayer(
network, pool_size=network.output_shape[-2:], ignore_border=False,
mode='average_exc_pad', name='GlobalAveragePool')
network = lnn.layers.FlattenLayer(network, name='Flatten')
network = lnn.layers.NonlinearityLayer(
network, nonlinearity=out_nonlinearity, name='output')
return network
评论列表
文章目录