def conv(network, batch_norm, num_layers, num_filters, filter_size, pad,
pool_size, dropout):
for k in range(num_layers):
network = lnn.layers.Conv2DLayer(
network, num_filters=num_filters,
filter_size=filter_size,
W=lnn.init.Orthogonal(gain=np.sqrt(2 / (1 + .1 ** 2))),
pad=pad,
nonlinearity=lnn.nonlinearities.rectify,
name='Conv_{}'.format(k))
if batch_norm:
network = lnn.layers.batch_norm(network)
if pool_size:
network = lnn.layers.MaxPool2DLayer(network, pool_size=pool_size,
name='Pool')
if dropout > 0.0:
network = lnn.layers.DropoutLayer(network, p=dropout)
return network
评论列表
文章目录