def run(self):
# Get paths to all images
im_files = find_images(join(self.input_dir))
assert (len(im_files) > 0)
if 'augmentation' in self.pipeline.keys():
print "Starting preprocessing ({} processes)".format(self.processes)
optimization_pool = Pool(self.processes)
subprocess = partial(preprocess, params=self)
results = optimization_pool.map(subprocess, im_files)
else:
print "Using previously augmented data"
# Create training and validation (imbalanced)
print "Splitting into training/validation"
try:
train_imgs, val_imgs = self.train_val_split(listdir(self.augment_dir))
self.random_sample(train_imgs, val_imgs, classes=DEFAULT_CLASSES)
except AssertionError:
print "No images found in one more classes - unable to split training and validation"
exit()
评论列表
文章目录