def __init__(self, params):
self.batch_size = params['batch_size']
self.outshape = params['shape']
self.lmdb = lmdbs(params['source'])
self.labels = self.lmdb.get_label_list()
self.img_mean = biproto2py(params['mean_file']).squeeze()
self.NIMGS = len(self.labels)
assert self.NIMGS%self.batch_size==0,'NIMGS {} not dividible by batchsize {}'.format(
self.NIMGS,self.batch_size)
self.num_batches = self.NIMGS/self.batch_size
self._cur = 0 # current batch
self.labels_tab = self.labels.reshape((self.num_batches,self.batch_size))
# this class does some simple data-manipulations
self.img_augment = SimpleAugment(mean=self.img_mean,shape=params['shape'],
scale = params['scale'])
#create threadpools for parallel augmentation
#self.pool = ThreadPool() #4
评论列表
文章目录